Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Glob Health ; 11(6): e933-e941, 2023 06.
Article in English | MEDLINE | ID: mdl-37202028

ABSTRACT

BACKGROUND: From the start of the SARS-CoV-2 outbreak, global sequencing efforts have generated an unprecedented amount of genomic data. Nonetheless, unequal sampling between high-income and low-income countries hinders the implementation of genomic surveillance systems at the global and local level. Filling the knowledge gaps of genomic information and understanding pandemic dynamics in low-income countries is essential for public health decision making and to prepare for future pandemics. In this context, we aimed to discover the timing and origin of SARS-CoV-2 variant introductions in Mozambique, taking advantage of pandemic-scale phylogenies. METHODS: We did a retrospective, observational study in southern Mozambique. Patients from Manhiça presenting with respiratory symptoms were recruited, and those enrolled in clinical trials were excluded. Data were included from three sources: (1) a prospective hospital-based surveillance study (MozCOVID), recruiting patients living in Manhiça, attending the Manhiça district hospital, and fulfilling the criteria of suspected COVID-19 case according to WHO; (2) symptomatic and asymptomatic individuals with SARS-CoV-2 infection recruited by the National Surveillance system; and (3) sequences from SARS-CoV-2-infected Mozambican cases deposited on the Global Initiative on Sharing Avian Influenza Data database. Positive samples amenable for sequencing were analysed. We used Ultrafast Sample placement on Existing tRees to understand the dynamics of beta and delta waves, using available genomic data. This tool can reconstruct a phylogeny with millions of sequences by efficient sample placement in a tree. We reconstructed a phylogeny (~7·6 million sequences) adding new and publicly available beta and delta sequences. FINDINGS: A total of 5793 patients were recruited between Nov 1, 2020, and Aug 31, 2021. During this time, 133 328 COVID-19 cases were reported in Mozambique. 280 good quality new SARS-CoV-2 sequences were obtained after the inclusion criteria were applied and an additional 652 beta (B.1.351) and delta (B.1.617.2) public sequences were included from Mozambique. We evaluated 373 beta and 559 delta sequences. We identified 187 beta introductions (including 295 sequences), divided in 42 transmission groups and 145 unique introductions, mostly from South Africa, between August, 2020 and July, 2021. For delta, we identified 220 introductions (including 494 sequences), with 49 transmission groups and 171 unique introductions, mostly from the UK, India, and South Africa, between April and November, 2021. INTERPRETATION: The timing and origin of introductions suggests that movement restrictions effectively avoided introductions from non-African countries, but not from surrounding countries. Our results raise questions about the imbalance between the consequences of restrictions and health benefits. This new understanding of pandemic dynamics in Mozambique can be used to inform public health interventions to control the spread of new variants. FUNDING: European and Developing Countries Clinical Trials, European Research Council, Bill & Melinda Gates Foundation, and Agència de Gestió d'Ajuts Universitaris i de Recerca.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Phylogeny , Mozambique/epidemiology , Retrospective Studies , Prospective Studies
2.
Front Public Health ; 10: 1048404, 2022.
Article in English | MEDLINE | ID: mdl-36579069

ABSTRACT

Africa accounts for 1.5% of the global coronavirus disease 2019 (COVID-19) cases and 2.7% of deaths, but this low incidence has been partly attributed to the limited testing capacity in most countries. In addition, the population in many African countries is at high risk of infection with endemic infectious diseases such as malaria. Our aim is to determine the prevalence and circulation of SARS-CoV-2 variants, and the frequency of co-infection with the malaria parasite. We conducted serological tests and microscopy examinations on 998 volunteers of different ages and sexes in a random and stratified population sample in Burkina-Faso. In addition, nasopharyngeal samples were taken for RT-qPCR of SARS-CoV-2 and for whole viral genome sequencing. Our results show a 3.2 and a 2.5% of SARS-CoV-2 seroprevalence and PCR positivity; and 22% of malaria incidence, over the sampling period, with marked differences linked to age. Importantly, we found 8 cases of confirmed co-infection and 11 cases of suspected co-infection mostly in children and teenagers. Finally, we report the genome sequences of 13 SARS-CoV-2 isolates circulating in Burkina Faso at the time of analysis, assigned to lineages A.19, A.21, B.1.1.404, B.1.1.118, B.1 and grouped into clades; 19B, 20A, and 20B. This is the first population-based study about SARS-CoV-2 and malaria in Burkina Faso during the first wave of the pandemic, providing a relevant estimation of the real prevalence of SARS-CoV-2 and variants circulating in this Western African country. Besides, it highlights the non-negligible frequency of co-infection with malaria in African communities.


Subject(s)
COVID-19 , Coinfection , Malaria , Child , Adolescent , Humans , SARS-CoV-2 , Burkina Faso/epidemiology , Prevalence , COVID-19/epidemiology , Pandemics , Coinfection/epidemiology , Seroepidemiologic Studies , Malaria/epidemiology
3.
Nat Genet ; 53(10): 1405-1414, 2021 10.
Article in English | MEDLINE | ID: mdl-34594042

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected the world radically since 2020. Spain was one of the European countries with the highest incidence during the first wave. As a part of a consortium to monitor and study the evolution of the epidemic, we sequenced 2,170 samples, diagnosed mostly before lockdown measures. Here, we identified at least 500 introductions from multiple international sources and documented the early rise of two dominant Spanish epidemic clades (SECs), probably amplified by superspreading events. Both SECs were related closely to the initial Asian variants of SARS-CoV-2 and spread widely across Spain. We inferred a substantial reduction in the effective reproductive number of both SECs due to public-health interventions (Re < 1), also reflected in the replacement of SECs by a new variant over the summer of 2020. In summary, we reveal a notable difference in the initial genetic makeup of SARS-CoV-2 in Spain compared with other European countries and show evidence to support the effectiveness of lockdown measures in controlling virus spread, even for the most successful genetic variants.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Communicable Disease Control/organization & administration , Models, Statistical , SARS-CoV-2/genetics , COVID-19/virology , Communicable Disease Control/methods , Humans , Incidence , Phylogeny , Physical Distancing , Quarantine/methods , Quarantine/organization & administration , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...